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ABSTRACT

The response of a one-dimensional electron plasma confined
by perfectly reflecting boundaries has been calculated numerically
for several externally-maintained electric field configurations
representing different physical situations. The electron distribution
function is expanded in a Fourier-Hermite series. The external fields
(of various wavenumbers and frequencies) are represented by equivalent
charge density terms in Poisson's equation.

In the first situation the external field is a standing wave
oscillating at approximately the resonant frequency for the given wave-
number ko. The energy of the particle distribution and the envelope
of the particle electric field are found to oscillate slowly with a
period corresponding to the period of oscillation of particles trapped
in the potential trough of the driving wave. Analogous spatial oscil-
lations have been reported by Malmberg and Wharton. The physical
system represented in these calculations is similar to the experiment
of Decker and Hirshfield in which & series of disks with alternating
potential is set up perpendicular to the axis of a plasma column.

In the second situation the external source charge density
is held constant and represents a small sinusoidal inhomogeneity in

the ion background. The appropriate Bernstein, Greene, and Kruskal



equilibrium is calculated and found numerically to be stable against
small perturbations. Landau damping rates for perturbations from
these inhomogeneous equilibria are compared with the values calculated
by Jackson and Raether.

In another calculation the inhomogeneity in the background
charge density 1s varied slowly compared with the electron plasma
frequency to simulate the fiéld seen by electrons in the presence of
an ion acoustic wave. This is done to test the conmon assumption that
in the presence of an ion wave the mobile electrons respond in such a
way as to obey a locally isothermal equation of state. In the cases
calculated the electrons do obey an isothermal equation of state to
within a few percent.

In the fourth situation the ion inhomogeneity is switched on
suddenly with the electrons initially in a uniform equilibrium. The
electrons redistribute themselves to screen out the ion field and, if
the inhomogeneity is not too large, they approach an inhomogeneous

equilibrium by Landau damping.




1. TINTRODUCTION

We report here the results of numerical calculations of the
response of a collisionless electron plasma to an externally-impcsed
electric field which depends on space and time. Previous numerical
calculations by the same techniques!'®'? have been concerned with

the initial value problem for the same system. Inclusion of the

external field allows statements to be made about the behavior of a
Vlasov plasma in situations where the length and time scales of the
phenomena bear no direct relation to the electron Debye length and

electron plasma frequency; such situations often occur in practice.

The equations to be investigated are a generalization of

the dimensionless equations treated by Armstrong:1'2'S
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where the electron Debye length is the fundamental unit of length

and the reciprocal of the electron plasma frequency is the unit of




time. f = f(x, v, t) is the electron distribution, E = E(x, t) is
the electric field, and pext.(x’ t) is an external "source" charge
density which is regarded as a given function of x and t and which
is regarded as generating the "external" part of the total electric
field. For example, 1 + Poxt. mighl represent the charge density
of the positive ions of a plasma; or Paxt. might stand for the
quasi-electrostatic external disk structure in the experiment of
Decker and Hirshfield.® The specific choice of the functional fora
is dictated by the problem one is attempting to simulate.
Calculations were done for four separate problems. After
a brief summary of the method of computation in Section 2. we treat
in Section 3 the response of an electron plasma to an external field
which varies on the time scale of the electron plasma frequency.

Section 4 describes the construction ot inhomogencous equilibria,

and the study of Landau damping of perturbations on these equilibria.
Section 5 concerns the response of a plasma to a Poxt which varies
slowly compared to the electron plasma frequency (ub < < ub)’ with
most of the attention directed to the degree to which the electron

plasma obeys a locally isothermal equation of state in the presence

of such a slowly varying external potential. Section 6 treats the
time dependence of the shielding cloud which forms around an

instantaneously introduced "test charge" distribution.



2. COMPUTATIONAL METHOD

We shall choose initial conditions and functional forms
for which the plasma may be alternatively regarded as spatially
periodic or as obeying perfectly-reflecting boundary conditions at
x = 0 and x = L. If we start with the electron distribution

f(x, v, 0) = f(-x, -v, 0) and external charge pext.(X, t) = o (-x,t).

ext.
with Pext. and f(x, v, 0) being periodic with period 2L in x, then it
is readily shown that £(0, v, t) = £(0, -v, t) and (L, v, t) =

f(L, -v, t) for all t > O; the plasma is therefore specularly reflected
at x = 0 and x = L. It also follows that E(0, t) = E(L, t) = O for

all t.

The quantities f, E, and Poxt. 2¥€ all expanded in complex

Fourier series,

© inkox
t(x, v, 8) = T f,(v, t)e . (3a)
N==
© inkox
E(x, t) = T E_(t)e , (3b)
n=-o
o inkox
pext.(x’ t) = % pn(t)e , (3¢)



where k_ = m/L. The symmetry conditions imply fn(-v, t) = f-n(v, t),
En(t) = —E_n(t), and pn(t) = p_n(t), so we need compute only for
n = 0.

The fn are further expanded in the Gram-Charlier series in
velocity used previouslyl’?’3:
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is the orthonormal Hermite polynomial of degree m. In this represen-
tation a Maxwellian velocity distribution requires only them = 0
term of the series.

Poisson's Equation (2) becomes
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and substitution into the transformed version of Equation (1) gives
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with Z_l = 0. The symmetry relations determine that
b .
2. (8) =z () = (-1)"z_(t)
m, -n B Zm,n t) = (-1) 2 ()

'The elements of the Zmn metrix are advanced step by step in time
according to Equation (6), using Gill's® specialization of the
Runge-Kuttea method.

Initiel distributions are usually chosen to be Maxwellian
in velocity so the only non-zero coefficients are Z Equation (6)
guarantees, however, that elements with increasing m will soon be
non-zero. (In practice this is due mainly to the streaming term —
the first term on the right hand side of Equation (6)).

As time increases 1t 1s necessary to calculate more and

more terms in the Hermite series in order adequately to represent



the velocity-space wrinkles in f. Typically, several hundred terms
in the series are needed, as discussed previously by Armstrong.l’®
In the Fourier expansion, disturbances spread to increasing n only
slowly, and for the problems considered here the n =0, 1, and 2

values of the Zmn are sufficient.
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3. RESPONSE TO A RAPIDLY VARYING FIELD;
EFFECTS OF "TRAPPED" PARTICLES

For this case it was desired to choose Pext to represent
the charge density on a periocdic array of grids,

o«

Pyt (5> B) = psin @t = { 6(x - 23L) - &(x - (2j+1)1) }

je-e

and thus to simulate the experiment of Decker and Hirshfield.? The
large number of Fourier harmonics required to represent accurately
the delta functions 1led to prohibitively large requirements of
computer time, so the somewhat less realistic but computationally

more convenient choice of a simple sine wave was made:

pext(x’ t) = 2p, sin @t cos k x , (7)

with = const. This is Jjust the leading term in the Fourier
series expansion of the deltea functions for the grids. The initial
distribution is taken to be a uniform Maxwellian.

Equations (1) and (2) can be linearized in Ooxct.. and
solved analytically. As a check on the accuracy of the numerical

methods (in addition to those previously discussed by Armstrong?:?),
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Equation (6) was also linearized and integrated numerically for
comparison with the long-time 1limit of the analytical result. For
the particular case of P = 0.0L4s58, ko = 0.916, and w, = 1.923, the
two results for El agreed to within 0.01% after the transient part
of the solution had Landau-damped away (t » 10 gb-l).

We are more interested in the non-linear effects on the
response to the external field. One class of non-linear phenomena,
in particular, can be seen much more easily in the context of the
driven problem than in the pure initial value problem: phenomena
associated with the oscillations of particles "trapped" in the
potential wells of the driving fields.

The potential generated by Equation (7) can be decomposed
into right and left traveling waves with phase velocities % ub/ko'

A particle moving at approximately the phase velocity of one of

the waves sees that wave as essentially a time-independent, constant-
profile potential well. (The effect of the non-resonant wave cancels
out when viewed on the time-scale of the interaction of the particle
with the resonant wave.) If the particle's total energy is small
enough it can be considered to be trapped in the potential trough of
the wave.

The period of an electron trapped at the bottom of the

1
trough of a wave of amplitude El and wavenumber ko is T = 2n(kOE1) 2,
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The period is longer for electrons of greater total energy, and
approaches infinity for particles at the boundary of the trapping
region. If the wave persists for times longer than the typical
oscillation period, we expect to see slow oscillations in the gross
properties of the plasma such as total kinetic energy and electro-
static fleld energy.

Figure 1 shows,for a particular case.the absolute value
of the Fourier components of the particle electric field - the total
electric field less the external field. The subscripts 1 and 2
indicate components of weavenumber ko and 2ko’ respectively. The
curve labelled P.E. (particle energy) shows the percent change in

the total kinetic energy of the particles. In the Fourier-Hermite

representation of the distribution, the total kinetic energy in

0 <x <L is given by (2ﬁ)%(ZOO + /2 Zgo)(n/Eko). The figure shows
that the particle kinetic energy undergoes & slow oscillation with

a period of about 32.5 ub-l' This value corresponds to the orbital
period of particles with a velocity (as measured in the frame of the
resonant wave) of about 0.3 Vinermal’ °©F about half the width of
the trapping region. (These are the particles that occupy the region

of greatest distortion of the distribution function, as can be seen

in Figure 2.)
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The envelope of the E. curve shows the same slow period

1
superimposed on the oscillations of frequency w, . At t T 32, when
the kinetic energy has almost returned to its initial value, El
undergoes a quick low-amplitude oscillation reminiscent of the phase
adjustment it experienced when the external field was switched on.

The broad dip of the E, envelope over the time of maximum particle

1
kinetic energy may be due to a detuning of the plasma from the

driving frequency W, because of the distortion of the distribution
function. (“b was chosen to approximately satisfy the dispersion
relation for the initial Maxwellian and k_ = 0.916).

Figure 2 shows the spatially uniform part of the distribution
function fo for velocities near ub/ko at three times in the energy
cycle. The curve for t = 17 (time of maximum particle kinetic energy)
shows the maximum distortion of the distribution from the initial
Maxwellian, while the t = 20 curve shows the decreasing distortion as
the trapped particles continue around their orbits in phase space.

The trapped particle phenomena are easier to observe in the
driven case, where the wave amplitude is maintained, than in the
initial value problem where the wave amplitude is decaying by Landau
damping. The decaying amplitude may free most of the initially trapped

particles before they can complete an appreciable fraction of even one

oscillation in the wave trough. This apparently happens in all cases
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shown in Reference 2 except for Figures 24 and 5a, where the first
half cycle appears to have been reached by t ¢ 15.

It is to be emphasized that the distortion of the velocity
distribution function near v % + “b/ko is of a qualitatively different
nature than the development of the quasi-linear "plateau". In the
quasi-linear theory®’7’8’9the presence of a continuum of phase
velocities provides for a monotonic approach to a flat velocity
distribution near the phase velocity of the excited waves; whereas
in the case of one driven wave, the distribution first flattens,
then develops a hump, then flattens again, and finally returns
approximately to its original form.

Because there is & spread in the orbit times for particles
in the trapping region, the phenomenon is not entirely reversible.
This accounts for the fact that the quantities in Figure 1 do not
return exactly to their initiel values after the trapped-particle

oscillation period. The oscillation in the envelope of |E for

L1

example, is presumably subject to a slow damping with an e-folding

time which is long compared with the times of any existing computation.
Similar considerations have been discussed analytically by

Al'tshul and Karpmanl®and O'Neill! for the initial value problem.

The effect has been observed experimentally by Malmberg and Wharton®

for the driven boundary-velue problem.
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In time we expect the particles to find themselves evenly
distributed around their orbits and the distribution function to have
the familiar plateau shape in the vicinity of the phase velocity of
the driving wave. However, the time for this to occur is apparently

very long compared to the time of any existing computations.
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4. TANDAU DAMPING OF PERTURBATIONS
ON INHOMOGENEOUS EQUILIBRIA

Quite some time ago, Bernstein, Greene, and Kruskall3 and
Harrisl4 showed how to analytically construct time-independent solu-
tions to Equations (1) and (2) which involve inhomogeneous electric
fields E(x) = - d¥(x)/dx. Any integrable distribution f = f(%.vg - 9)
which leads to a self-consistent solution for Poisson's equation is
such an equilibrium. Armstrong and Montgomery® appear to have found
an inhomogeneous equilibrium as the final state of the class of
initially unstable electron plasmas they considered. We do not know
of previocus analytic calculations of inhomogeneous equilibria which
would remain numerically stable on the computer. 1In this section we
describe the construction of such equilibria and the study of the
damping of perturbations about these equilibria. Analytical studies
of increasing degrees of sophistication have been carried out by
MontgomerylS, Lowl®, Pearlsteinl?, Friedbergl® and Knorr 19,

For Poxt. e take a sinusoidal but time-independent value

= €
Pexct. cos k _x (8a)
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The inhomogeneity is measured by = const., and the distribution

will be

—_ a VB L.
f = > exp (-7§ + ) . (8b)

TT

We consider solutions for ¢ which can be written as a
rapidly converging Fourier series,
= + +
o(x) Al cos ksx A, cos 2k x + A

cos 3k x + ...
3 o

; , ©

with ]Al > > ]A2 > > [A3 |, etc., and pick A, sufficiently small
that the exponential series exp ¢ = 1 + ot @2/21 + ... also
converges rapidly.

Substituting (8) and (9) into (2) and retaining terms

through 0(63) gives, upon equating total electron and ion charge,

a = 1
ST, v
1
1+ A an
-a A 2/&
1
.A.2 = 2 >
a + )-I-ko (lO)
-a A 2 + 12A \
A = Al 1 2
- >
3 2k a + 9k§ /

a

A
e = 2pl=A1(a+k§)+ (A% + 1a,)
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It is most convenient to choose Al and k, and calculate the rest of
the quantities using relations (10). From these the equilibrium
coefficients Zmn are easily calculated, since the velocity distribution
is Jjust Maxwellian. Coefficients with m # O vanish identically.

The computed ZOn are then used as initial conditions to
see how well they represent a time-independent solution of Equation
(6). For A, = 0.1 and k,< 0.5, the z . matrix was stationary through
three significant figures with oscillations of only +1 in the fourth
figure. (The I.B.M. 7044 on which these computations were done does
8-digit arithmetic.) We found that adjustments of less than 0.05%
in the initial matrix elements improved the degree to which the
solution was stationary to the extent of moving the oscillations out
to the sixth or seventh significant figure. This "tuning" is desirable
to get as near as possible to a stationary solution so that small
Perturbations from the solution can be studied for longer times. For
ko= 0.75 the calculated equilibrium was off by about one per cent, but
was easily corrected with a fe@ trials.
and Z02 is established

ol’

for a given ko’ inhomogeneous Landsu-damping for that wavenumber is

Once an equilibrium set of Zoo’ Z

measured by using an initial value of 2 ; (perturbed) Y 1.05 z,
(equilibrium), and watching the corresponding electric field pertur-

bation, E damp for several cycles. A sample measurement for

1 pert.’




19

the case of ko = 0.5 and Al = 0.1 is shown in Figure 3. The slopes

of the two straight lines represent reasonable error limits for this
measurement of the damping decrement Y. The unperturbed equilibrium
value of 202 was used for this run but a perturbation electric field
of wavenumber 2ko was soon generated nonlinearly. This perturbation

field, E £.7 stayed at least a factor of 20 smaller than E

2 per 1 pert.

so the damping can be considered to be essentially linear.

Damping decrements measured in this way for Al = 0.1 and
for several values of ko are shown in Figure 4. ZError bars indicate
uncertainties in the values when uncertainties are larger than the
plotted points. Solid circles represent cases where the perturbation
had the same wavenumber as the inhomogeneity;open circles represent
cases where the perturbation wavenumber was twice the inhomogeneity
wavenumber. In the latter cases the equilibrium values of Zoo and

Z were used but ZO was started lO% larger than its equilibrium

ol 2

value. For perturbations of wavenumber 2ko = 0.50 and 0.75 the
measured damping rates fell within the error limits of rates measured
for k= 0.50 and 0.75 and are not shown in Figure 4. The solid curve
shows v(ko) calculated®® for linear Landau damping about homogeneous

equilibria (Al =A,=A, = 0).

3

As k_ decreases the measured values of V(ko) lie farther

above the homogeneous damping curve. The small ko limit is the domain
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of applicability of the inhomogeneocus Landau damping calculations of
Jackson and Raether?!. Their calculations indicated that for small L
Landau damping is greatly increased by even small background inhomo-
geneities.

The curve in Figure 5 shows the increase in the damping
decrement Y with increasing background inhomogeneity N (= v/2 in
Jackson and Raether?2l) where the eigenfunction of the electric field
is assumed to be the Mathieu function seg(kox, q) with q = hpl/(3k02).
The condition for se, to be the eigenfunction is that
a = (w2 - l)/(3ko2)a;h or o - 1+ leO2 for ¢ < 1.5.

The points in Figure 5 show damping rates obtained by
least-squares fits to data similar to that presented in Figure 3.

In the present case damping is very much slower and the perturbation
field is calculated for as long as hSQp-l. The error bars are drawn
conservatively and represent the difficulty in measuring very slow
damping of small perturbations. The condition for se, is not accurately
satisfied in these calculationsem— ® is found to be about 1.10 instead

of 1.25. Nevertheless, the agreement in the damping decrements is

striking.
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5. RESPONSE TO A SIOWLY VARYING FIELD (y < < wp);
TSOTHERMAL BEHAVIOR OF AN ELECTRON PLASMA

Many plasma phenomena involving ions are characterized by
time scales slow compared to the electron plasma frequency. This
permits the more mobile electrons to follow the ion motion while
remaining in a quasi-steady state configuration. Ion acoustic waves
and drift waves are well-known examples. In many situations®<’23
it greatly simplifies the mathematics to assume that the electron

gas obeys a locally isothermal equation of state. In our one-

dimensional situation, this means that the ratio P(x, t)/pm(x, t)

is constant, where P 1s the electron pressure computed from the
distribution function and O is the local electron mass density. In
this section we check the constancy of the ratio over position and
time while we slowly vary the background ion inhomogeneity.

Again we use Poxt. = 2p, sin upt cos kox. The wavenumber

1
used for these tests was ko = 0.75 which corresponds to electron
oscillations of frequency k) = 1.73. The ion frequency was chosen
much smaller: wy = 0.75. The integrations were carried out for

41.9 u@-l (one-half of an ion cycle) for two kinds of initial conditions.

In one case the ion perturbation was started at its maximum value

(pext « COS ubt)and the electrons were in the inhomogeneous equilibrium
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appropriate to ko and pl and in two other cases the ion perturbation
was started from zero(pext. « sin wot)and the electrons were spatially
uniform. To reduce computing time for these tests we employed the
Brownian - motion type of Fokker -~ Planck collision term previously
used by Lenard and Bernstein 24, Grant and Feix®%, and Armstrong and

Montgomerys:

In the Fourier-Hermite representation the term is merely
- v, m Zmn on the right hand side of Egquation (6). Since the term
is proportional to m it has only a small effect on the low order
terms in the Hermite expansion. Even for the small "collision fre-
quency" v, = 0.002 that was used in these tests the effect on terms
with larger m is sufficient to smooth out the short-wavelength
velocity-space wrinkles in the distribution function and to limit
expansion of the matrix in the Hermite direction. For additional
discussion of the collision term see references 3 and 25.

The left hand panel of Figure 6 illustrates the effect of
the collision term for the case with Paxt, & COS “bt' The second

order departure fo(g)(v, t) of the spatially uniform part fo(v, t)
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of the distribution function from its initial Maxwellian fo(v, t = 0)
is shown for t = one-quarter ion cycle. One curve resulted from

Vo = 0.002 and the other from Vo = 0. The collision term eliminated
the velocity-space wrinkles and reduced the departure from the
Maxwellian. The right hand panel shows fo(g) calculated after one-
half ion cycle using Ve = 0.002.

Variations in the ratio P/pm are shown in Figure 7 for three
cases. Panel (a) shows the ratio as a function of time at x = O (the
"worst" choice of x, from the point of view of the constancy of P/qn),
and panel (b) shows the ratio as a function of x at the time of

"worst" choice). The figure shows

maximum ion perturbation (again the
that the ratio was preserved to about 2% when the total perturbation
was 2p, = 0.156 (% 15%), and to about T% when the total perturbation

0.312.

was 291
Although the calculstions were carried out for only 41.9 ub-%
we feel that these results furnish good support for the assumption that
electrons obey a locally isothermal equation of state in the presence
of a slowly varying ion background density.
We remark that even thougn the locally isothermal behavior
of the electron distribution does seem to be well borne out by the

computation, the assumptions made23 on the form of the electron

distribution function in order to deduce the locally isothermal
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relation do not themselves seem to be particularly well borne out.
An analytical demonstration of the locally isothermal law has apparent-

1y not been given for the case of a slowly varying external potential.
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6. APPROACH TO INHOMOGENEOUS EQUILIBRIA;
DEVELOPMENT OF A SHIELDING CLOUD

In Section L we measured damping of small prerturbations
about an inhomogeneous equilibrium and in Section 5 we isothermally
led a uniform plasma to an inhomogeneous equilibrium by slowly varying
the background charge density. In this section we consider the ap-
proach to an inhomogeneous equilibrium when the background inhomogeneity
= 2p

is suddenly switched on (pext. =0, t «0; o cos kX, t » 0).

ext. 1

The electrons rush to screen out the external field. They
initially overcompensate for the inhomogeneity and then undergo Landau
damped oscillations as they approach a new equilibrium. If 0y is not
toc large, then the spatial charge distribution is the same as for the
equilibrium calculated in Section 4. The velocity dependence, how-
ever, will not be Maxwellian in this case and fl and f2 will be
marked by large velocity-space wrinkles. The solution of the linear-
ized Vlasov equation for this case gives the total electric field in
the long-time limit E, pon = Eext./D(ko, 0) where E

and D(ko, 0) is the plasma dielectric function for zero frequency.

ext. -t Ql/ko

Figure 8 shows an example of the damping of E por fOF

ko = 0.50 and pl

damping rate fitted to the first three extrema of the El oy Curve.

= 0.05. The envelope curves are for a constant
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Even for this small external field the nonlinear effects are suffi-
cient to shift the equilibrium value of El ToT Ve from the linear
vrediction. The 2xternal field can be thought of as a wave with zero
phase velocity, and, as we see in Figure 9, the spatially uniform
part of the particle distribution is most strongly affected in the
trapping region surrounding v = O.

If Dl were made much larger, then the nonlinear terms would
predominate, and a plot such as Figure 8 would show no sign that

El TOT approaches an equilibrium in the time intervals that can be

calculated.
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FIGURE CAPTIONS

Avsolute value of first and second Fourier components of
particle electric field for an electron plasma driven by
a sine wave. Curve labelled P.E. shows the percent increase
in the total electron kinetic energy. Total electric field

is particle field plus the external field.

Distortion of the spatially uniform part of the distribution
function near the phase velocity ub/ko of the driving wave
for the situation of Figure 1. The distortion is greatest
at T ~ l7u%_l, approximately one-half of the period of

trapped particle motion.

Damping of perturbation on a spatially non-uniform equilib-
rium to illustrate measurement of the damping decrement Y.
Difference in slopes of the two straight lines indicates

the uncertainty for this measurement.

Landau damping decrement as a function of wavenumber for
perturbations on spatially non-uniform equilibria. The
s0lid curve is the corresponding spatially uniform rate.
Error bars indicate uncertainties in the measurement of the

damping decrement.

Landau damping decrement as & function of inhomogeneity
Py for ko = 0.22. The theoretical curve (based on Jackson
and Raether) assumes that the eigenfunction of the eleclric

field is the Mathieu function se2(kox. q).



FIGURE 6.

FIGURE 7.

FIGURE 8.

FIGURE G.
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Second order change fo(z) in the spatially uniform part

of the distribution function from its initial Maxwellian
after one-quarter ion cycle (left panel) and after one-half
ion cycle (right panel). The left panel also illustrates
the effect of leaving the collision term out of the
calculation. fo(g) is measured in percent of

fo(v =0, t = 0).

(a) Percent variation in the ratio of electron pressure
to mass density as a function of time at x = 0 for three
cases. Zero variation represents perfect isothermal
response of electrons to the slow variation in the ion
background density.

(b) Same as (a) except variation is now shown as a
function of x at the time of maximum ion inhomogeneity

for each case.

Damping of the first Fourier component of the total electric
field as electrons approach an inhomogeneous equilibrium
to screen out a fixed external charge density

(Oext. - 2pl
purely expontential damping fitted to the first three

cos kox). The envelope curves represent

extrema of E Nonlinear effects shift the equilibrium

1 TOT’
value from the linear prediction.

Modification of the spatially uniform part of the electron
distribution in the vicinity of v = O for the situation of

Figure 8.
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"Response of a One-Dimensional Vlasov Plasma to External Electric
Fields," by Rollin C. Harding (U. of Iowa 68-15)

(1) Page 21, Lth line from the bottom:

Replace w = 0.75 by w, = 0.075

(2) Page 22, only equation on page:

of b of
Replace X )c ¥ 3t ) . .




